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The zero mass limit in Yang-MiUs theory I 

Norman Dombey 
School of Mathematical and Physical Sciences, University of Sussex, Falmer, Brighton, 
Sussex, BN1 9QH, UK 

Received 23 March 1976 

Abstract. The zero mass limit of massive Yang-Mills theory is investigated and it is shown 
that there is a conflict between Lorentz invariance and the internal symmetry group in the 
theory. A necessary but not sufficient condition for the resolution of this conflict is the 
introduction of zero mass scalar fields. 

It was pointed out some years ago (van Dam and Veltman 1970) that massive 
gravitational or Yang-Mills field theory has the unpleasant property of not tending to 
the conventional massless theory for arbitrarily small mass. In particular, by measuring 
the perihelion movement of Mercury or the bending of light by the sun, it is claimed 
(Iwasaki 1970, Zakharov 1970, van Dam and Veltman 1970) that a massive graviton is 
inconsistent with the data, however small the mass. 

This paper is not about gravitational fields which may well have special characteris- 
tics. The Yang-Mills field, however, as the simplest example of a non-Abelian gauge 
field theory is of major interest; such non-Abelian gauge theories are now used as the 
underlying asymptotically-free theory of strong interactions. It is therefore disquieting 
to be told that although the essence of asymptotically-free theories is that mass terms 
can be neglected in some scaling limit, the mass m + 0 limit of these theories is not the 
same as the underlying m = 0 theory. Indeed, as Sakurai (1960) emphasized very 
forcibly in his classic paper on the symmetries of the strong interactions, the internal 
symmetries of the interacting system should be taken as responsible for the dynamics; 
that is to say isotopic spin conservation, for example, implies the existence of the 
(massive) Yang-Mills field which we now identify with the rho-meson. It was these 
ideas which Gell-Mann (1961) generalized to SU(3) and it was essential that an octet of 
massive vector mesons should exist in a partially gauge-invariant theory which gave rise 
to the underlying fully gauge-invariant theory, constructed by analogy with the Yang- 
Mills theory, when these mass terms were turned off (Glashow and Gell-Mann 1961). 
So the fundamental modern ideas on the symmetry properties of the strong interactions 
are based on the existence of a smooth zero mass limit in a non-Abelian gauge theory, 
whereas van Dam and Veltman (1970) show that this limit does not exist for precisely 
this class of theories. 

This is the problem that we investigate in this paper. We shall show that there is an 
underlying zero mass theory for which the m + 0 limit is smooth, but that theory must- 
contain zero mass scalar fields as well as vector fields. Indeed, we regard these scalar 
fields as being an integral part of the Yang-Mills field. 

The discussion of the zero mass limit of vector meson theories naturally involves the 
ratio Elm where E is the energy of the particle; thus singularities at m = 0 correspond 
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to the high energy behaviour of the theory and therefore involve the renormalizability 
of the theory. We shall not pursue these questions here. They will be treated in another 
paper (Dombey and Vayonakis 1976) where the self-interaction of the Yang-Mills field 
is investigated from the point of view developed in this paper. In particular, it is hoped 
to illustrate the connection between symmetry-breaking and renormalization which so 
often appears to be magical. 

We begin by considering the zero mass limit of massive electrodynamics. It is now 
well known that although a photon mass term (-$m2A,A,) will break the gauge 
invariance of the Lagrangian, current conservation allows the massive theory to exist 
and the zero mass limit to be smooth as far as any physical observable is concerned. The 
problems of taking the zero mass limit of a massive vector meson theory arise from 
singularities at m = 0 in ( a )  the propagator which is of the form 

for a virtual meson of momentum k, and ( 6 )  the longitudinal polarization vector E ~ .  This 
satisfies the constraint k . cL = 0 and so 

eLlr = (O ,O,  k o l m  i k , / m )  

k,  = (O,O,  kz, iko) 

(2) 

(3) 

where 

with k, > 0. 
A nice discussion of how current conservation allows a smooth zero mass limit in 

such Abelian theories has been given by Bell (1973). For our purposes here we will 
restrict the discussion to the difficulties caused in the zero mass limit by the longitudinal 
polarization vector E ~ .  

eL can be written 

EL, = (m/ko)  ezr + (k*/mko)k, (4) 

ezp = (O,O, L O ) .  ( 5 )  

where 

So in a process in which there is one single photon, current conservation will cause the 
longitudinal mode to vanish as m + 0, the amplitude of the decoupling being propor- 
tional to the Stueckelberg factor m / k o t .  In the limit at m = 0 we have gauge invariance 
under the transformation E + E  + a k ,  k . E = 0, Q arbitrary, which is another way of 
saying that no longitudinal modes are present (Dombey 1964). 

A covariant way of writing (4) is 

EL, = k, /m + ( m / w ) n ,  
where n, is the lightlike vector 

n,=(O 0 1 -i) 

i.e. it is the lightlike vector conjugate to the lightlike vector given by the m = 0 limit of k ,  
and 

w = k . n .  (8) 
t This is not strictly true (see Dombey 1964). 
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Now consider a problem with two external massive photons, for example, Compton 
scattering. Then the amplitude can be written 

T = e : ) T  P V  e(’) (9) 
where the indices ( 1 )  and ( 2 )  refer to the initial and final photon states. The amplitude 
for the scattering of longitudinal photons is thus 

( 1 )  (2) TLL= E L , T ~ ~ E L ~ .  
Using the decomposition (6) we obtain the result at m = 0 

This is our main result. Clearly in a theory with 

kl,TPV = Tpvkzv = 0 ( 1 2 )  
then TLL = 0 at m = 0. In massive electrodynamics or any Abelian gauge theory this is 
the case. Equation ( 1 2 ) ,  however, is not satisfied in a non-Abelian gauge theory. We 
now illustrate this point. 

Take the triplet of fields (T+, T O ,  T - )  to describe any isovector scalar or pseudosca- 
lar particle of arbitrary mass and consider Compton scattering with a massive photon of 
mass m off one of the charged components 7r+ (say). Then to lowest order in e’ (figure 
1 )  the amplitude 

Tpv=e2[-(2pi +k1) , (2p2+k2)~/(2p1 k1-m’) 

+(2pz-k1),(2p1 -k2)u/(2P1 kz+m2)+2~ ,v1 .  ( 1 3 )  

Figure 1. 

By inspection 

kl,T,, = T,vkzv = 0 
and so to this order the longitudinal modes will vanish in the m + 0 limit. It is not 
difficult to show that this result holds in all orders of perturbation theory. 

Now consider a Yang-Mills triplet (y+,  yo, y- )  of mass m described by the isotopic 
vector field A, including the gauge-breaking mass term ( - im2A, .  A,) in the Lagran- 
gian. The lowest order diagrams for y-w+ scattering are shown in figure 2. Hence in 
this case 

T,v = ~ 2 ~ - ( 2 P l + k 1 ) , ( 2 ~ z + k 2 ) v l ( 2 P 1  * k1-m2) 

- [ ( P I  +PZ) (ki  +kz)  - ( 2 k z - k i ) , ( p i  + ~ z ) ~  
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lo )  

Figure 2. 

I b )  I C )  

where 

A=-’ 2 8  ( ~ 1 + ~ 2 ) . ( k l + k 2 ) / ( 2 k l  . k 2 + m 2 ) .  (16)  
Note that A contains the t channel photon pole at t = m2 where t = - ( k l  - k J 2  = 
2 k l .  k 2 + 2 m 2 .  This arises from figure 2 ( b )  which involves the non-Abelian vertex 
connecting three Yang-Mills fields. It might be thought that conventional gauge 
invariance still held at m = 0 even when equations (15)  were satisfied as 

(17)  

(18) 

( E ,  (1) + (Y 1 k :)) T,, (E:’ + azk :I) = E : ) T , ~ E  1’’ 
for arbitrary (finite) al, a2 at m = 0. But the theorem ( 1 1 )  gives in this case at m = 0 

T L L  = A # 0. 

Hence the massive theory does not reduce correctly to the zero mass theory where, 
by Lorentz invariance, the massless vector meson can only have two transverse modes. 

That the longitudinal mode cannot be transformed away in Yang-Mills theory by a 
gauge transformation should not be surprising; after all the gauge transformation valid 
a t m = O  

A,=A,+a,A+eAxA, (19)  
which keeps invariant the Lagrangian 

L f =  -:G,, . G,,, 
where 

GWy = d,A, -&A, + eA, x A ,  (21)  
is a different gauge transformation from the gauge transformation A, +A,  + a d  of 
classical electrodynamics. Although it is possible when considering a single charged 
photon state to choose Asuch that A x  A,  = 0 and thus transform away the longitudinal 
component, it is not possible in general to choose non-commuting gauge fields A for 
more than one such photon. Although this result is not well known, it is not new; that a 
charged particle of zero mass and spin J >  1 could not be in general restricted to 
transverse modes was pointed out by Case and Gasiorowicz (1962) many years ago. 

Thus we have rederived their result which shows that there is a conflict between 
Lorentz invariance which requires that zero mass vector particles can only have two 
transverse polarization states, and the internal non-Abelian symmetry which cannot 
transform away longitudinal modes. It is this conflict which is responsible for many 
difficulties encountered in Yang-Mills theory, not oniy that of the zero mass limit 
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discussed here. For example, even if all external massless Yang-Mills fields are taken to 
have only the two transverse polarization states allowed by Lorentz invariance, in 
internal lines of loops they will have longitudinal modes which will not vanish when 
their internal momentum 4 satisfies 4 2  = 0. Thus the unitarity of the theory is violated 
unless physical scalar particles are introduced into loops to subtract out these unwanted 
longitudinal modes: these are the Fadeev-Popov ghosts. 

In linearized gravitational theory, it has been pointed out that the zero mass limit of 
the massive theory would correspond to a Brans-Dicke theory, rather than the Einstein 
theory (van Nieuwenhuizen 1973). That is to say, if the appropriate Brans-Dicke 
theory is chosen as the underlying zero mass theory, a massive graviton can then be 
introduced into the theory smoothly. This procedure can be adopted with Yang-Mills 
theory too; it implies that there should be an underlying three component massless field 
which would consist of a massless two component vector field A, and a massless scalar 
field 4. The basic Lagrangian is then 

(22) z= - I  4GMV. G p v - 8 a J 4 + f 4 X A w ) 2 + ~  

where 9 involves extra terms necessary for renormalizability (Dombey and Vayonakis 
1976) which are not relevant here. 

The scalar fields 4 are introduced into the theory to describe the scattering of the 
longitudinal modes of the Yang-Mills field in a Lorentz invariant way. They thus 
describe the same triplet (y+,  yo, y-) as does the triplet of vector fields A,. The field A, 
couples to the 4 current with coupling constant f .  By comparison with equations (16) 
and (18) for the scattering amplitude TLL at m = 0 we see that 

f = $ e  (23) 

2 = - :G,, . G,, --;(a,& + f4  x A, - m ~ , ) ~  +2. 

T,,, = p:J+Am2kl,kZv/k:k: (25) 

ki,TWv = TPvk2, = 0 

as 4 is taken to have no direct couplings with the matter field IT. 

When the Yang-Mills field acquires mass the Lagrangian becomes 
- 

(24) 
In terms of (24) we can reconsider our example of y-lr+ scattering. Now 

2 where T‘:; is given by (14). So now at k :  = k:  = -m 

(26) 
and hence from the expression (6) for eL only the term proportional to the product of 
lightlike vectors nl,n2,, contributes to the amplitude TLL. So just as before 

TLL = A + O( m 2 /  w w2) (27) 
but the presence of the 4 field in the Lagrangian now implies that the longitudinal 
polarization vectors E!) can be replaced by the lightlike vectors ni.  This is the function of 
the 4 field for m # 0; we expect it to be a subsidiary field which does not change the 
physics. Yao (1973) shows how this occurs in Abelian theories. But at m = 0, it 
becomes physical, and as a corollary the polarization vectors E:) have no meaning in this 
limit. The vectors ni, however, are continuous in the limit and do behave like scalar 
fields for m = 0 as has been discussed by McKenzie (1972). 

Note, however, that the ‘charge’ of the scalar field 4’ is not e,  but Be, from (23). So 
the conflict between Lorentz invariance and the non- Abelian gauge symmetry has not 
been resolved by the introduction of the b, field as the 4 field, treated seriously as a 



1380 N Dombey 

physical particle at m = 0, is not invariant under the appropriate isotopic transforma- 
tion which is 

4- t$+eAx 4. (28) 
We conclude therefore that the scalar fields t$ must be included in Yang-Mills 

theory or other non-Abelian gauge theories to describe the longitudinal modes in the 
m = 0 limit if the theory is to be Lorentz invariant, but that this is a necessary 
requirement, not a sufficient one, as the m = 0 limit itself breaks the non-Abelian gauge 
symmetry. We shall deal with this problem of symmetry breaking in another paper 
(Dombey and Vayonakis 1976), together with the problems of tree-unitarity and 
renormalizability which have been carefully avoided here. 

Acknowledgments 

I should like to thank P K Kabir for introducing me to this problem and John Bell for 
several hours of patient discussion. 

References 

Bell J S 1973 Nucl. Phys. B 60 427 
Case K M and Gasiorowin S G 1962 Phys. Rev. 125 1055 
van Dam H and Veltman M 1970 Nucl. Phys. B 22 397 
Dombey N 1964 Nuovo Cim. 32 1696 
Dombey N and Vayonakis C E 1976 J. Phys. A :  Math. Gen. 9 1381 
Gell-Mann M 1961 Gdifotnia Institute of Technology Synchrotron Laboratory Report CTSL-20 
Glashow S L and Gell-Mann M 1961 Ann. Phys. N Y  15 437 
Iwasaki Y D 1970 Phys. Rev. 2 2255 
McKenzie N C 1972 Lett. Nu000 a m .  4 957 
van Nieuwenhuizen P 1973 Phys. Rev. D 7 2300 
Sakurai J J 1960 Ann. Phys., N Y  11 1 
Yao Y P 1973 Phys. Reo. D 7 1647 
Zakharov V I 1970 JEW Lett. 12 3 12 


